Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tian-Tian Pan* and Duan-Jun Xu

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: cindyptt@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.011 \text{ Å}$ R factor = 0.067 wR factor = 0.167 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(1*H*-benzimidazole- κN^3)(thiodiacetato- $\kappa^3 O, S, O'$)-cadmium(II) dihydrate

In the title complex, $[Cd(C_4H_4O_4S)(C_7H_6N_2)_3] \cdot 2H_2O$, the Cd^{II} atom is surrounded by three benzimidazole ligands and one thiodiacetate dianion to complete a distorted octahedral CdN₃O₂S coordination geometry. The tridentate TDA chelates to the Cd^{II} atom in a facial mode. A C-H··· π interaction and hydrogen bonding between neighboring complexes help to stabilize the crystal structure.

Received 26 July 2005 Accepted 27 July 2005 Online 12 August 2005

Comment

As part of our ongoing investigations on non-covalent interactions in metal complexes, the title Cd^{II} compound, (I), incorporating benzimidazole (BZIM) ligands has been prepared and its X-ray crystal structure is presented here.

The Cd^{II} atom assumes a distorted octahedral coordination geometry formed by three BZIM ligands and one tridentate thiodiacetate dianion (TDA) (Fig. 1). The molecular structure is similiar to that for [Cd(BZIM)₃(iminodiacetato)]·2H₂O (Su & Xu, 2005). The TDA chelates to the Cd^{II} atom in a facial configuration, a feature commonly found in metal–TDA complexes (Baggio *et al.*, 1999; Pan *et al.*, 2005*a*,*b*).

Each carboxyl group coordinates in a monodentate fashion to the Cd^{II} atom, and the uncoordinated carboxyl O atom is hydrogen bonded to the uncoordinated water molecule (Fig. 1). Each five-membered chelate ring has an envelope conformation, with the Cd atom in the flap position and lying 0.571 (12) and 1.086 (10) Å out of the mean planes formed by the other four atoms.

No π - π stacking occurs in the crystal structure of (I), but a C-H··· π interaction is observed involving BZIM ligands of neighboring complexes (Fig. 2). The H···*Cg* (*Cg* is the ring centroid) separations and C-H···*Cg* angles range from 2.65

Printed in Great Britain – all rights reserved Acta Cryst. (2005). E61, m1735–m1737

© 2005 International Union of Crystallography

Figure 1

The molecular structure of (I) with 20% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonds.

Figure 2

The intermolecular C-H··· π interactions (dashed lines) in (I) [symmetry codes: (vi) $-\frac{1}{2} + x, y, \frac{1}{2} - z$; (vii) $-\frac{1}{2} + x, \frac{1}{2} - y, -z$].

to 2.82 Å and 139 to 157°. Neighboring complexes are linked to each other *via* $N-H\cdots O$ hydrogen bonding between BZIM and carboxyl groups (Table 2).

Experimental

CdCl₂·2.5H₂O (0.46 g, 2 mmol), Na₂CO₃ (0.21 g, 2 mmol) and H₂TDA (0.30 g, 2 mmol) were dissolved in a water–ethanol solution (20 ml, 1:3 ν/ν). Benzimidazole (0.24 g, 2 mmol) was added and the mixture was refluxed for 4 h and then filtered. Colorless crystals were obtained after one week.

Crystal data

 $[Cd(C_4H_4O_4S)(C_7H_6N_2)_3]\cdot 2H_2O$ $M_r = 650.98$ Orthorhombic, *Pbca* a = 10.6042 (3) Å b = 20.1157 (8) Å c = 25.9795 (8) Å V = 5541.7 (3) Å³ Z = 8 $D_x = 1.560$ Mg m⁻³

Data collection

Rigaku R-AXIS RAPID4diffractometer4 ω scansKAbsorption correction: multi-scan θ (ABSCOR; Higashi, 1995)h $T_{min} = 0.782, T_{max} = 0.929$ k36430 measured reflectionsl

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.067$
$wR(F^2) = 0.167$
S = 1.33
4866 reflections
352 parameters
H-atom parameters constrained

Mo $K\alpha$ radiation Cell parameters from 29359 reflections $\theta = 2.3-25.0^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ T = 295 (2) K Platelet, colorless $0.26 \times 0.22 \times 0.07 \text{ mm}$

$w = 1/[\sigma^2(F_0^2) + (0.0561P)^2]$
+ 17.5824P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.97 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd-O1	2.390 (5)	Cd-N23	2.268 (6)
Cd-O3	2.272 (4)	Cd-N33	2.308 (6)
Cd-N13	2.313 (5)	Cd-S	2.7365 (18)
O1-Cd-O3	86.10 (19)	O3-Cd-S	74.89 (12)
O1-Cd-N13	82.8 (2)	N13-Cd-N23	98.6 (2)
O1-Cd-N23	95.72 (17)	N13-Cd-N33	94.2 (2)
O1-Cd-N33	171.32 (19)	N23-Cd-N33	92.8 (2)
O1-Cd-S	73.33 (11)	N13-Cd-S	93.37 (15)
O3-Cd-N13	165.82 (19)	N23-Cd-S	162.70 (14)
O3-Cd-N23	91.32 (18)	N33-Cd-S	98.77 (16)
O3-Cd-N33	95.39 (19)		

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W-H1A\cdots O2$	0.89	2.01	2.786 (8)	144
$O1W - H1B \cdot \cdot \cdot O2W^{i}$	0.99	2.00	2.899 (10)	149
$O2W - H2A \cdots O1W^{ii}$	0.98	1.90	2.817 (10)	155
$O2W - H2B \cdots O4$	0.94	1.86	2.752 (11)	158
$N11-H11\cdots O4^{iii}$	0.86	1.93	2.768 (9)	164
$N21 - H21 \cdots O1^{iv}$	0.86	2.38	3.172 (8)	154
$N21 - H21 \cdots O2^{iv}$	0.86	2.36	3.021 (7)	134
$N31 - H31 \cdots O2^{v}$	0.86	1.94	2.766 (8)	161

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (v) x + 1, y, z.

The water H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with a fixed $U_{\rm iso}$ value of 0.08 Å². Other H atoms were placed in calculated positions, with C-H = 0.97 (methylene) or 0.93 Å (aromatic) and N-H = 0.86 Å, and were included in the final cycles of refinement in riding mode, with $U_{\rm iso}(\rm H) = 1.2U_{eq}$ of the carrier atoms.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999). The project was supported by the National Natural Science Foundation of China (grant No. 20443003).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Baggio, R., Garland, M. T., Manzur, J., Peña, O., Perec, M., Spodine, E. & Vega, A. (1999). *Inorg. Chim. Acta*, 286, 74–79.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Pan, T.-T., Su, J.-R. & Xu, D.-J. (2005a). Acta Cryst. E61, m1376-m1378.
- Pan, T.-T., Su, J.-R. & Xu, D.-J. (2005b). Acta Cryst. E61, m1576-m1578.
- Rigaku (1998). PROCESSAUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Su, J.-R. & Xu, D.-J. (2005). J. Coord. Chem. 58, 863–868.